Conexiuni ale variabilității stelare extrinseci și intrinseci clasa sistemelor de tip oEA. Cazul sistemului Y Leo

Vlad Turcu

Institutul Astronomic al Academiei Române, Observatorul Astronomic Cluj-Napoca,

Str. Cireșilor 19, RO-400487 Cluj-Napoca, România

Sumar:

Este prezentat un catalog "la zi" al sistemelor binare de tip oEA. Este prezentat în detaliu cazul sistemului Y Leonis, primul sistem din această clasă descoperit în România. Sunt prezentate pulsațiile multiperiodice și noua soluție fotometrică pe baza observațiilor proprii și a reanalizării observațiilor de viteză radială obținute de Struve pentru acest sistem. Este semnalată fezabilitatea proiectelor de monitorizare a acestui tip de sisteme binare folosind suport tehnic și de procesare accesibil.

Cuvinte cheie:

Stele: oscilații – stele: binare: cu eclipse: Algol – stele: variabile : δ Scuti – stele: individuale: Y Leo

1. INTRODUCERE

Stele binare cu componentă pulsantă

- Sisteme binare
 - Sisteme binare vizuale
 - Sisteme binare spectroscopice
 - Sisteme binare cu eclipse variabile extrinseci
 - Sisteme detaşate
 - Sisteme semitedaşate
 - Sisteme în contact
- Stele pulsante variabile intrinseci
 - $\circ \beta Cep$
 - SPB (Slowly Pulsating B stars)
 - Variabile pulsante în banda clasică de instabilitate
 - Ro AP
 - δ Sct, SX Phe
 - γ Dor
 - RR Lyr
 - δ Cep
 - \circ Solar like
 - $\circ \ \ sdB/\ \ sdO-Sub\ \ Dwarf\ \ pulsating\ B/\ O\ \ stars$
 - WD White Dwarf Pulsators

2. CLASA SISTEMELOR DE TIP OEA

Sisteme de tip oEA

sisteme binare cu eclipse semidetaşate cu o componenta principală pulsantă de tip δ Scuti (pe secvența principală în stadiu de acreție de masă de pe componenta secundară).(definiție Mkrtichian et al. 2003)

Dinamica descoperirii pulsațiilor în sistemele binare oEA și repartiția lor spațială.

		1	8	1					
Nr.	Stea	An	Autori	Publicație		Instrument			Obs. tip
crt.		desc.			(:	apertură	,tip, senzoi	r, tip)	
1	AB Cas	1971	Tempesti, P.	IBVS_596	40	R	PM	EMI9502	
2	Y Cam	1973	Broglia, P.	IBVS_823	102	Т	PM		
3	V577 Oph	1990	Volkov, I.M.	IBVS_3493	47.5	Т	PM	EMI9863	RRLyr Simbad
4	RZ Cas	1998	Ohshima, O., Narusawa, SYa., Akazawa, H., Fujii, M., Kawabata, T., Ohkura, N.	IBVS_4581	28,35,101, 7.5	T,T,T,R	PM, CCD	R647,ST-7	
5	AS Eri	2000	Mkrtichian, D.E., Gamarova, A.Yu.	IBVS_4837	90,48	T,T	PM, CCD		
6	R CMa	2000	Gamarova, A.Yu., Mkrtichian, D.E., Kusakin, A.V.	IBVS_4836	90		PM		
7	TW Dra	2001	Kusakin, A.V., Mkrtichian, D.E., Gamarova, A.Yu.	IBVS_5106	48		PM,CCD	?	
8	RX Hya	2002	Kim,SL., Kwon, SG., Youn, JH., Mkrtichian, D.E., Lee, J.W.	IBVS_5314	61		CCD	SITe 2k	
9	AB Per	2002	Kim,SL., Lee, J.W., Kwon, SG., Lee, D.J., Mkrtichian, D.E., Youn, JH.	IBVS_5325	61		CCD	SITe 2k	
10	V551 Aur	2003	Gaspar, A., Kiss, L.L., Bedding, T.R., Derekas, A., Kaspi, S., Kiss, Cs., Sarneczky, K., Szabo, Gy.M., Varadi, M.	A&A_410_879	60,90,180		CCD	Photometrics 1x1k	
11	V469 Cyg	2004	Caton, D.B.	IBVS 5531	80		CCD	Tek 1024	
12	EF Her	2004	Kim,SL., Koo, JR., Lee, J.A., Kang, Y.B., Choo, K.J., Mkrtichian, D.E., Kim, SH., Lee, D.J., Lee, J.W.	IBVS_5537	61		CCD	SITe 2k	
13	CT Her	2004	Kim,SL., Koo, JR., Lee, J.A., Kang, Y.B., Choo, K.J., Mkrtichian, D.E., Kim, SH., Lee, D.J., Lee, J.W.	IBVS_5537	100		CCD	SITe 2k	
14	AO Ser	2004	Kim,SL., Kang, Y.B., Koo, JR., Mkrtichian, D.E., Lee, J.W.	IBVS_5538	100		CCD	SITe 2k	
15	TU Her	2004	Lampens, P., Van Cauteren, P., Strigachev, A., Kim, SL., Kang, Y.B., Koo, JR., Mkrtichian, D.E.	IBVS_5572	100,130,10 0,40		CCD	HoLiCam 2x2k, CH360 1x1k, LOAO 2x2k, ST-10 1.5x1k	

Tabelul 1.1. Sisteme oEA - cronologic

Nr.	Stea	An	Autori	Publicație	Instrument		Obs. tip		
crt.		desc.		,	(:	apertură	,tip, senzo	or, tip)	
16	HD 172189	2005	Martin-Ruiz, S., Amado, P.J., Suarez, J.C., Moya, A.	ASPConfSer_333_ 253	90,150,220	-			
17	VV UMa	2005	Kim,SL., Lee, J.W., Lee, CU., Kang, Y.B., Koo, J R., Mkrtichian, D.E.	IBVS_5598	100		CCD	1k, 2k	
18	V346 Cyg	2005	Kim,SL., Lee, J.W., Kang, Y.B., Koo, JR., Mkrtichian, D.E.	IBVS_5628	100		CCD	2k	
19	IU Per	2005	Kim,SL., Lee, J.W., Kang, Y.B., Koo, JR., Mkrtichian, D.E.	IBVS_5629	100		CCD	2k	
20	IV Cas	2005	Kim,SL., Lee, CU., Koo, JR., Kang, Y.B., Lee, J.W., Mkrtichian, D.E.	IBVS_5669	100		CCD	2k	
21	HIP 7666	2005	Escola-Sirisi, E., Juan-Samso, J., Vidal-Sainz, J., Lampens, P., Garcia-Melendo, E., Gomez-Forrellad, J.M., Wils, P.	A&A_434_1063	40,40		CCD	SX Starlight (SONY ICX027BL)	
22	QU Sge	2006	Jeon, YB., Kim, SL., Lee, M.G., Lee, H., Lee, J.W.	AJ_636_L129	180		CCD	SITe 2k	
23	TZ Dra	2006	Mkrtichian, D., Kim, SL., Kusakin, A.V., Rovithis- Livaniou, Rovithis, P., Lampens, P., van Cauteren, P., Shobbrook, Rodriguez, E., Gamarova, A.,Olson, E.C., Kang, Y.W.	ASpSci_304_169					
24	TZ Eri	2006	Mkrtichian, D., Kim, SL., Kusakin, A.V., Rovithis- Livaniou, Rovithis, P., Lampens, P., van Cauteren, P., Shobbrook, Rodriguez, E., Gamarova, A.,Olson, E.C., Kang, Y.W.	ASpSci_304_169					
25	BO Her	2007	Sumter, G.C., Beaky, M.M.	IBVS_5798	20		CCD	ST-7XME, ST- 402ME	
26	MX Pav	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			
27	IZ Tel	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			
28	VY Mic	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			
29	CPD -60.871	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
30	HD 62571	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
31	CPD -41.5106	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
32	HD 99612	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
33	HD 220687	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
34	CPD -31.6830	2007	Pigulski, A., Michalska, G.	Acta Ast_57_61		ASAS			ED
35	Y Leo	2008	Turcu, V., Pop, A., Moldovan, D.	IBVS_5826	40		CCD	ST-8XMEI	
36	GSC 4550-1408	2008	Dimitrov, D., Kraicheva, Z., Popov, V.	IBVS_5842	60		CCD	FLI PL09000	
37	GSC 3889-0202	2008	Dimitrov, D., Kraicheva, Z., Popov, V.	IBVS_5856	60		CCD	FLI PL09000	
38	EW Boo	2008	Soydugan, E., Tuysuz, M., Bakis, V., Soydugan, F., Senyuz, T., Bilir, S., Frasca, A., Donmez, A., Kacar, Y., Demircan, O.	CoAst_157_379	40		CCD	STL-1001E	

Nr.	Stea	An	Autori	Publicație	In	Instrument		Obs. tip
crt.		desc.			(apertură ,tip, senzor, tip)			
39	TY Cap	2009	Liakos, A., Niarchos, P.	CoAst_160_2	40	CCD	ST-8XMEI	
40	WY Cet	2009	Liakos, A., Niarchos, P.	CoAst_160_2	40	CCD	ST-8XMEI	
41	GSC 4588-0883	2009	Dimitrov, D., Kraicheva, Z., Popov, V.	IBVS_5883	60	CCD	FLI PL09000	
42	GSC 4293-0432	2009	Dimitrov, D., Kraicheva, Z., Popov, V.	IBVS_5892	60	CCD	FLI PL09000	
43	DY Aqr	2009	Soydugan, E., Soydugan, F., Senyuz, T., Puskullu, C., Tuysuz, M., Bakis, V., Bilir, S., Demircan, O.	IBVS_5902	40	CCD	STL-1001E	
44	BG Peg	2009	Soydugan, E., Soydugan, F., Senyuz, T., Puskullu, C., Tuysuz, M., Bakis, V., Bilir, S., Demircan, O.	IBVS_5902	40	CCD	STL-1001E	
45	WY Leo	2009	Dvorak, S.	CoAst_160_64	25	CCD	ST-9XE	
46	RR Lep	2009	Dvorak, S.	CoAst_160_64	25	CCD	ST-9XE	beta Lyr
47	AC Tau	2009	Dvorak, S.	CoAst_160_64	25	CCD	ST-9XE	
48	SX Dra	2010	Dimitrov, D., Kraicheva, Z., Popov, V., Genkov, V.	IBVS_5925	60	CCD	FLI PL09000	
49	V417 Aur	2010	Fernandez, M.A., Williamson, C.O., Beaky, M.M.	IBVS_5948	20	CCD	ST-9	
50	YY Boo	2010	Hambsch, FJ., Lampens, P., Van Cauteren, P., Kleidis, S., Robertson, C.W., Krajci, T., Wils, P.	IBVS_5949	28,40,18,2 5,30,40,30, 30	CCD	ST-10XME, ST-7XMEI, ST- 8XME, ST- 8XMEI, ST- 9XME	

* Michalska&Pigulski, 2008, au semnalat detecția a 30 de sisteme oEA în analiza datelor OGLE II, fără a specifica parametrii sistemelor detectate.

** Ultima coloană se referă la tipul de sistem binar (8 sisteme nu sunt de tip Algol)

Tabelul 1.2. Caracteristicile sistemelor oEA

Nr.	Stea	Stea RA 2		2000		De	ec 20	00	Mag	Mag.	Tip spe	ctral	Adâncime	Perioada	Perioada	Amplit.	Filtru
crt.			(h n	ns)		((0,)))	max	min.l			min.ll	Orbitală	Pulsație	Pulsație	
			•			-						1		(zile)	(zile)	(mag)	
1	AB Cas	2	37	31.514		71	18	16.26	10.1	11.85	A3	KV	0.18	1.3668783	0.0582874	0.025	V
2	Y Cam	7	41	11.008		76	4	26.12	10.5	12.24	A8V		0.1	3.3055234	0.066457537	0.0122	V
3	V577 Oph	18	16	45.853		6	54	18.24	10.978	11.621	A		0.509	6.079084	0.0694909	0.026	V
4	RZ Cas	2	48	55.510		69	38	3.44	6.18	7.72	A3V	K0IV	0.08	1.195247	0.01557731	0.0075	V
5	AS Eri	3	32	25.126	-	3	18	48.09	8.29	9	A3V	K0IV	0.13	2.664152	0.016940538	0.0045	V
6	R CMa	7	19	28.182	-	16	23	42.88	5.7	6.34	F0V	K1IV	0.08	1.1359405	0.047147571	0.0044	V
7	TW Dra	15	33	51.059		63	54	25.71	8	10.5	A8V	KOIII	0.1	2.806847	0.05555	0.0021	V
8	RX Hya	9	5	41.162	-	8	15	39.75	8.9	11.6	A8		0.05	2.281645	0.05156944	0.007	В
9	AB Per	3	37	45.203		40	45	49.38	10.4	11.4	A5		0.1	7.1602886	0.19584722	0.015	V
10	V551 Aur	6	2	38.270		49	53	4.70	14.43	14.65			0.15	1.1732	0.12936	0.025	V
11	V469 Cyg	20	14	48.870		34	44	22.20	12.8	13.9			0.1	1.312516	0.027777	0.01	
12	EF Her	16	55	26.098		17	17	47.84	11	12	A3V			4.7291	0.10416666	0.06	V
13	CT Her	16	20	26.566		18	27	16.88	10.6	11.7	F0		0.05	1.7863748	0.0194444	0.03	V
14	AO Ser	15	58	18.408		17	16	9.96	10.7	12	A2		0.1	0.87934745	0.046511627	0.01	В
15	TU Her	17	13	35.368		30	42	36.00	10.88	13.7	A5 ?			2.2670005	0.055555	0.0045	
16	HD 172189	18	38	37.554		5	27	55.34	8.73	8.86	A2			5.70198	0.054945054	0.01	V
17	VV UMa	9	38	6.722		56	1	7.27	10.13	10.91	A2V		0.13	0.6873801	0.019880715	0.0075	В
18	V346 Cyg	20	19	24.726		36	20	24.19	11.8	13.5	A5		0.1	2.743305	0.050220972	0.015	В
19	IU Per	2	59	36.430		43	55	19.40	10.5	11.6	A4			0.8570257	0.023751276	0.01	В
20	IV Cas	23	49	31.530		53	8	4.76	11.2	12.4	A2		0.1	0.9985132	0.026544913	0.005	В
21	HIP 7666	1	38	41.669		52	31	7.68	9.688	9.94	A5		0.12	2.37229	0.039269585	0.0017	V
22	QU Sge	19	53	49.340		18	45	43.40	15.24	16.55			0.2	3.7907	0.02787068	0.0066	V
23	TZ Dra	18	22	11.673		47	34	7.98	9.6	10.5	A7V			0.8660347	0.0204	0.004	В
24	TZ Eri	4	21	40.331	-	6	1	9.24	9.8	12.6	A5V			2.6060653	0.053425367	0.0073	V
25	BO Her	18	40	30.088		24	52	51.30	10.7	13.8	A7		0.1	4.272843	0.0744625	0.08	
26	MX Pav	18	24	11	-	63	56	54	11.35	13.31			0.13	5.730835	0.075601664	0.0769	V
27	IZ Tel	20	28	44	-	56	20	48	12.06	14.05			0.12	4.880219	0.073757153	0.0459	V
28	VY Mic	20	49	7	-	33	43	54	9.47	10.46	A4III/IV		0.08	4.436373	0.081738673	0.0194	V
29	CPD -60.871	7	39	4	-	60	37	12	10.03	10.17	A2V		0.11	1.2209619	0.214229188	0.0171	V
30	HD 62571	7	44	22	-	6	41	48	8.73	8.85	F0V		0.04	3.208647	0.11047989	0.0417	V
31	CPD -41.5106	11	6	15	-	42	24	36	10.47	10.65			0.1	2.136998	0.1212517	0.0202	V
32	HD 99612	11	27	33	-	24	50	12	10.98	11.44	A7II/III		0.07	2.778758	0.067963879	0.021	V
33	HD 220687	23	25	48	-	11	36	36	9.55	9.76	A2III		0.03	1.594251	0.038212782	0.0128	V
34	CPD -31.6830	23	45	20	-	31	0	30	10.95	11.17			0.13	0.884334	0.183037946	0.0541	V
35	Y Leo	9	36	51.805		26	13	57.63	10.09	13.2	A3V(A5V)	(K0III)	0.1	1.686102	0.028999485	0.0041	V
36	GSC 4550-	11	40	1.410		75	9	21.50	11.26	11.66				1.23837	0.027027	0.04	В
	1408																

Nr. crt.	Stea		RA 2 (h n	2000 n s)		De (ec 20	00)	Mag max	Mag. min.l	Tip spe	ectral	Adâncime min.ll	Perioada Orbitală (zile)	Perioada Pulsație (zile)	Amplit. Pulsație (mag)	Filtru
37	GSC 3889- 0202	17	46	30.461		53	11	57.92	10.6	10.95				2.71	0.044072278	0.045	R
38	EW Boo	15	2	46.1		37	54	36.41	10.27		A0			0.906336	0.0208333	0.02	V
39	TY Cap	20	24	29.691	-	12	57	55.38	10.3		A5			1.42345612	0.041322314	0.028	В
40	WY Cet	1	35	35.912	-	11	56	30.67	9.6		A2			1.9396855	0.075757575	0.017	В
41	GSC 4588- 0883	19	27	53.706		77	17	41.89	11.67	12.32				3.2582	0.05208333	0.015	R
42	GSC 4293- 0432	23	45	41.834		66	5	6.54	10.72	10.97	A2			4.3844	0.0454545	0.04	V
43	DY Aqr	22	19	4.290	-	2	38	30.00	10.51	11.11				2.1597	0.042753313	0.013	V
44	BG Peg	22	52	47.320		15	39	34.60	11.39	12.35	A2			1.952443	0.039154267	0.03	V
45	WY Leo	9	31	1.109		16	39	25.21	11		A2			4.98578	0.0655617	0.011	V
46	RR Lep	5	12	10.515	-	13	11	58.57	9.98		A4			0.91543	0.031382	0.005	V
47	AC Tau	4	37	6.356		1	41	31.17	10.5		A8			2.0434	0.057035	0.006	V
48	SX Dra	18	4	33.871		58	23	54.20	10.411	11.8	A9V		0.2	5.169196	0.04347826	0.04	V
49	V417 Aur	5	13	31.783		35	39	10.98	7.9		A0			1.86553	0.209170013	0.02	В
50	YY Boo	15	35	28.310		43	28	49.10	12.4	13.4	A7III			3.933049	0.06128095	0.0396	V

Avantajele sistemelor oEA:

- Vizibilitatea aproape de planul ecuatorial simplifică identificarea modurilor de pulsație neradiale
- Posibilitatea filtrării spațiale și identificării precise a modurilor de pulsație pe durata eclipselor componentei pulsante (minime principale)
- Determinarea preioadei de rotație a componentei pulsante poate fi determinată precis prin mecanismul de "rotational splitting" a modurilor neradiale
- Învelişul comun de acreție circumbinar în sisteme de tip Algol poate acționa ca filtru spațial și poate modula amplitudinile aparente și fazele modurilor de pulsație neradiale
- Transferul / acreția de masă poate influența caracteristicile de pulsație ale componentei care câștigă masă, iar în consecință rata de transfer poate fi determinată precis prin schimbările de frecvență de pulsație și în spectru

3. SISTEMUL Y LEONIS

3.1. Introducere

VariabilaY Leonis (HIP 47178 = SAO 80927) este un sistem binar cu eclipsă de tip Algol destul de puțin studiat în ciuda faptului că sistemul binar este cunoscut de aproape 100 de ani. Sistemul are o perioadă orbitală de aproximativ 1.68610 zile. Eclipsele primare sunt foarte adânci, având o scădere de magnitudine de aproximativ 3.1 magnitudini. Tipul spectral al componentei primare este A3 așa cum a fost determinat de Struve (1945). Pe baza observațiilor de viteză radială realizate de Struve și a celor mai complete observații fotometrice UBV realizate de Johnson (1960), existente până în prezent, Giuricin et al. (1980) au dat o soluție a sistemului binar. Ei au determinat masa componentei primare: $M_h=2.6 M_s$.

3.2. Datele observaționale

Telescop, locație: 16" Meade LX200 Schmidt-Cassegrain, Observatorul AstronomicCluj-Napoca, Stația Feleacu

Camera CCD: SBIG ST-8XMEI (KODAK KAF 1603ME sensor) + CFW9 Color Filter Wheel UBVRI Custom Scientific filters set.

Timp de integrare 20 secunde, filtru V, 2×2 analogue binning mode. Pentru sezonul 2010 au fost obținute succesiv observații V, IR cu timpi de integrare de 20 de secunde.

Preprocesare, prelucrare fotometrică: bias, dark frames scaling, flat fields și dark flats; AIP4WIN2 software (Berry & Burnell, 2005).

Stele de comparație sunt date în tabelul 3.1 (vezi Turcu et al., 2008).

Precizia observațiilor fotometrice: mai bună de 2mmag (S/N >500)

Observații: 2008 – detecția pulsațiilor

2009 – confirmarea pulsațiilor multiperiodice

2010 – corecția și confirmarea noii soluții fotometrice pentru sistemul binar (WD code)

Identificator	Nume	RA (J2000)	Dec (J2000)	V _T	(B _T - V _T)
VAR	Y Leo	9 ^h 36 ^m 51 ^s .807	+26°13'57".66	10 ^m .090	0 ^m .296
C1	GSC 01962 1289	9 ^h 37 ^m 25 ^s .353	+26°07'36".34	10 ^m .698	0 ^m .670
C2	GSC 01962 1118	9 ^h 37 ^m 14 ^s .36	+26°12'58".6	(11 ^m .53)	-
C3	GSC 01962 1325	9 ^h 37 ^m 03 ^s .22	+26°11'55".4	(13 ^m .47)	-

Tabelul 3.1 Parametrii fotometrici ai stelelor observate în seriile de imagini, extrase din cataloagele Tycho-2 (Perryman, 1997) și ESO / ST-ECF GSC (Guide Star Catalog)

Fig. 3.1 Exemplu de imagine CCD pentru zona conținând sistemul binar Y Leo

3.3. Detecția pulsațiilor **\delta** Scuti

Noi am observat acest sistem binar începând din sezonul iarnă-primăvară 2008. Observațiile care vor fi prezentate în continuare au fost făcute în afara eclipselor principale în trei nopți (fazele orbitale au fost 0.764...0.922 în data de 20/21 februarie 2008 =JD 2454517, 0.680...0.877 în data de 25/26 februarie 2008 = JD 2454522, și 0.325...0.470 în data de 19/20 martie 2008). Fazele orbitale au fost determinate cu următoarea efemeridă, determinată pe baza observațiilor obținute în același sezon și care includ și eclipse principale: $t_n = HJD 2454509.35034 + 1.68610897 \cdot n$

Seriile de imagini obținute cu filtrul V în sistemul instrumental ventru *VAR-C1*, *C1-C2*, și *C3-C1*, pentru fiecare noapte de observații, au fost analizate separat, luând în considerareponderile individuale rezultate din erorile observaționale calculate pentru fiecare stea în parte. Spectrul de amplitudini al fiecărei sesiuni de observații a fost analizat folosind metoda lui Kuschnig et al. (1997) și metoda propusă de Pop (2005).

Seriile de magnitudini diferențiale *C2-C1* și *C3-C1*, obținute pentru fiecare din cele trei sesiuni de observații s-au dovedit a fi stabile din punct de vedere fotometric în limita erorilor observaționale.

Toate cele trei curbe de lumină obținute pentru cele trei nopți (Fig.:3.2) prezintă evident oscilații de mică amplitudine suprapuse peste zona relativ plată a curbei de lumină a sistemului Y Leo. După aplicarea unei "detrend"-uiri a fiecărei curbe de lumină în parte, am analizat spectrul de amplitudine al tuturor datelor. Pentru primele două nopți am utilizat un polinom de gradul doi pentru "detrend", în timp ce pentru a treia noapte, care acoperea partea descendentă spre începutul eclipsei secundare a fost necesară folosirea unui polinom de gradul 4 pentru "detrend".

Cel mai mare peak în spectrul de amplitudine (figura 3.5) apare la aproximativ 35 cicli/zi, echivalentă cu o periodicitate de 41 minute. În toate cele 3 nopți a fost găsită ca fiind statistic semnificativă la un nivel de încredere de 100%. Aplicarea metodei lui Breger et al.(1993), în același domeniu de frecvență ne-a furnizat valori ale rapoartelor semnal/zgomot de : 8.19, 6.61 și respectiv 3.91. Aceste rezultate sunt în acord cu cele obținute cu metodele amintite anterior.

Aplicarea metodei prezentate de Pop (2005), evidențiază prezența unui zgomot la un nivel semnificativ mai mare decât nivelul așteptat din zgomotul observațional. Este de remarcat de asemenea prezența variațiilor de la ciclu la ciclu ale curbei de lumină, precum și structura asimetrică a peak-ului cel mai mare din spectru. Pentru clarificarea caracterului pulsațiilor sunt necesare noi observații și o decuplare corectă între pulsație și binaritate, incluzând modulația de frecvență datorată așa numitului "light-time effect".

Fig. 3.2 Curbe de lumină pentru Y Leo cu detecția pulsațiilor (Turcu et al, 2008)

Fig. 3.3 Spectrul pentru seria totală de date după eliminarea "trend"-urilor și fereastra spectrală a datelor (Turcu et al., 2008)

Având în vedere amplitudinea și perioada oscilațiilor precum și tipul spectral și masa componentei primare a sistemului binar Y Leo, putem spune pe baza observațiilor prezentate, că această stea este o pulsantă de tip δ *Scuti* cu frecvența de 34.48337 (±0.00056) cicli/zi și semiamplitudinea de 4.09 (±0.15) mmag. Prezența variațiilor de profil în liniile H α ale sistemului, semnalată de Yoon et al. (2004) este probabil legată de prezența fenomenului transferului de masă în sistem.

Continuarea observațiilor pentru acest sistem, în sezonul 2009, a permis determinarea caracterului multimodal al pulsațiilor. Observațiile pentru sezonul 2009 în zonele de "palier" ale curbei medii au fost obținute în datele de: 12/13 ianuarie =JD 2454844, 24/25 februarie 2009 = JD 2454887, 15/16 aprilie 2009 = JD 2454937. Am calculat reziduurile obținute după eliminarea trendurilor, și am realizat simulări de tip Monte -Carlo pentru momentele de timp ale observațiilor pentu a găsi semnificația statistică a peak-urilor din spectrele de amplitudini. Am calculat spectrele de amplitudine pentru fiecare set în parte, am identificat succesiv primele 3 frecvențe din fiecare spectru și am calculat succesiv reziduurile după extragerea fiecărei astfel de frecvențe. După elinarea trend-urilor, identificarea primelor 3 frecvențe ca amplitudine în spectru, am plasat în spațiul semnificației statistice distribuțiile normale ale simulărilor Monte Carlo și fiecare din cele 3 frecvențe astfel determinate.

JD 2454844	JD 2454887	JD 2454937
$f_1\!\!=\!35.07\pm0.27$	$f_1 = 34.37 \pm$	$f_1 = 35.42 \pm$
c/d	0.12 c/d	0.21 c/d
$A_1 = 5.88 \pm$	$A_1 = 4.58 \pm 0.23$	$A_1 = 4.04 \pm 0.27$
0.35 mmag	mmag	mmag
$\Phi_1 = 1.790 \pm$	Φ_1 =4.735 ±	$\Phi_1 = 4.455 \pm$
0.059	0.048	0.069

Tabelul 3.2. Parametrii pulsațiilor pentru observații din sezonul 2009 pentru Y Leo

JD 2454844	JD 2454887	JD 2454937
$f_2 = 43.53 \pm$	$f_2 = 44.61 \pm 0.22$	$f_2 = 46.08 \pm$
0.50 c/d	c/d	0.48 c/d
$A_2 = 3.15 \pm 0.34$	$A_2 = 2.76 \pm 0.24$	$A_2 = 1.73 \pm$
mmag	mmag	0.27 mmag
$\Phi_2 = 1.47 \pm 0.11$	$\Phi_2 = 4.765 \pm$	$\Phi_2 = 2.47 \pm$
	0.083	0.16

Fig. 3.4. Observațiile și analiza acestora pentru Y Leo în data 24/25.02.2009 (Turcu et al., 2009)

3.4. Analiza fotometrică

Am putut determina o nouă soluție fotometrică, pe baza codului Wilson-Devinney (Wilson&Devinney, 1971; Wilson & VanHamme, 2007), pentru sisteme binare cu eclipse, care evidențiază caracterul parțial al eclipselor primare ale sistemului (Turcu et al., 2010). Noua soluție bazată pe 7217 date observaționale CCD, magnitudini diferențiale în filtrul V - Johnson-Cousins, și care acoperă mai mult de 70% din ciclul orbital, descrie sistemul Y Leonis cu înclinarea planului orbitei: i = 86.115. Semiaxa mare a orbitei este $a = 8.62469 R_{solare}$. Stelele componente ale sistemului au masele, razele și temperaturile: $M_1 = 2.294 M_{solare}, M_2 = 0.744 M_{solare}, R_1 = 1.90 R_{solare}, R_1 = 1.90 R_{solare}, R_2 = 2.47 R_{solare}, T_1 = 8855$ K, $T_2 = 4276$ K.

Fig. 3.5 Noua soluție fotometrică pentru sistemul binar Y Leonis (Turcu et al., 2010) și reprezentarea fizică a sistemului (dreapta)

Parametru	Stea 1	Stea 2	Parametru	Stea 1	Stea 2		
i (°)	86. ±0.	12 15	A	1.0	0.756 ±0.047		
q	0.3 ±0.0	243 032	<i>r</i> _{pole}	0.2188 ±0.0012	0.26686 ± 0.00073		
е	()	$r_{\rm point}$	0.2218 ±0.0012	0.3866 ±0.0035		
<i>T</i> (K)	8855	4276 ±23	<i>r</i> _{side}	0.2204 ±0.0012	0.27794 ± 0.00078		
Ω	4.887 ±0.024	2.519	<i>r</i> _{back}	0.2214 ±0.0012	0.31066 ±0.00078		
$L_x/(L_1+L_2)$	0.95252 ± 0.00014	0.04748 ± 0.00014					
x	0.409	0.309					
У	0.283	0.370					
g	1.0	0.3					

Tabelul 3.3 Parametrii sistemului Y Leo pe baza noii soluții cu ajutorul codului Wilson-Devinney (Turcu et al., 2010)

Fig. 3.6 "Fit"-ul pe baza soluției Wilson – Devinney pentru curba de lumină în IR pentru Y Leo (sezonul 2010)

4. CONCLUZII

Sistemele de tip oEA sunt o clasă foarte "dinamică" de variabile extrinseci și intrinseci deopotrivă.

Această clasă de sisteme este importantă atât pentru posibilitatea determinării parametrilor fizici pentru componentele sistemelor cât și pentru asteroseismologie prin intermediul pulsațiilor de tip Delta Scuti, (frecvent pusații multiperiodice multimod).

Descoperirea și "securizarea" parametrilor pulsațiilor de tip Delta Scuti pentru sistemul Y Leonis pe baza observațiilor obținute cu suportul tehnic existent la Observatorul Astronomic Cluj, Stația Feleacu demonstrează fezabilitatea proictelor de monitorizare a sistemelor candidate pentru clasa de tip oEA. Este de altfel prima descoperire de acest gen în domeniul stelelor variabile realizată 100% în România.

5. BIBLIOGRAFIE

Berry, R., & Burnell, J., 2005, The Handbook of Astronomical Image Processing, Willmann-Bell, Inc.: Richmond, Virginia, USA

Binney, J., & Merrifield, M., 1998, Galactic Astronomy, Princeton University Press, Princeton, New Jersey

Giuricin, G., Mardirosian, F., & Predolin, F., 1980, IBVS, 1786

Jeffery, C.S., 2008, CoAst, 157, 240

- Johnson, H. J., 1960, ApJ, 131, 127
- Kuschnig, R., Weiss, W.W., Gruber, R., Bely, P.Y., Jenkner, H., 1997, Astron.&Astrophys., 328, 544
- Michalska, G., Pigulski, A., 2008, Journal of Physics Conf.Ser., Vol.118, 1, 012064
- Mkrtichian, D.E., Nazarenko, V., Gamarova, A.Yu., Lehmann, H., Rodriguez, E., Olson, E.C., Kim, S.-L., Kusakin, A.V., & Rovithis-Livaniou, H., 2003, in Sterken, C., ed., ASP Conf. Ser. Vol. 292, Interplay of Periodic, Cyclic and Stochastic Variability in the selected areas of the H-R Diagram, Astron. Soc. Pac., San Francisco, p. 113
- Perryman, M. A. C., 1997, The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission, Noordwijk, Netherlands: ESA Publications Division, ESA SP-1200
- Pop, A., 2005, in Sterken, C., ed., ASP Conf. Ser. Vol. 335, The light-time effect in astrophysics. Causes and cures of the H-R diagram, Astron. Soc. Pac., San Francisco, p. 263
- Struve, O., 1945, ApJ, 102, 74
- Turcu, V., Pop, A., & Moldovan, D., 2008, IBVS, 5826
- Turcu, V., Pop, A., & Moldovan, D., 2009, communication presented at the International Symposium "Between Earth and Stars" dedicated to International Year of Astronomy, Timişoara, 28 29 May 2009
- Turcu, V., Pop, A., Marcu, A., 2010, ASpSci, online 28 july 2010.
- Wilson, R. E., & Devinney, E., 1971, ApJ, 166, 605
- Wilson, R. E., & Van Hamme, W., 2007, Computing Binary Star Observables (ftp.astro.ufl.edu/pub/wilson/lcdc2007)
- Yoon, T. S., Lee, J. A., Byeon, J. G., Kim, K. M., Kim, J. H., Yoo, K. H., & Kim, S. H., 2004, New Astron. Rev., 48, 759